Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts.

نویسندگان

  • Etienne Dantan
  • Cécile Proust-Lima
  • Luc Letenneur
  • Helene Jacqmin-Gadda
چکیده

Missing data and especially dropouts frequently arise in longitudinal data. Maximum likelihood estimates are consistent when data are missing at random (MAR) but, as this assumption is not checkable, pattern mixture models (PMM) have been developed to deal with informative dropout. More recently, latent class models (LCM) have been proposed as a way to relax PMM assumptions. The aim of this paper is to compare PMM and LCM in order to tackle informative dropout in a longitudinal study of cognitive ageing measured by several psychometric tests. Using a multivariate longitudinal model with a latent process, a sensitivity analysis was performed to compare estimates under the MAR assumption, from a PMM and from two LCM. In the PMM, dropout patterns are included as covariates in the multivariate longitudinal model. In the simple LCM, they are predictors of the class membership probabilities while, in the joint LCM, the dropout time is jointly modeled using a proportional hazard model depending on latent classes. We show that parameter interpretation is different in the two kinds of models and thus can lead to different estimated values. PMM parameters are adjusted on the dropout patterns while LCM parameters are adjusted on the latent classes. This difference is highlighted in our data set because the latent classes exhibit much more heterogeneity than dropout patterns. We suggest several complementary analyses to investigate the characteristics of latent classes in order to understand the meaning of the parameters when using LCM to deal with informative dropout.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals

BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Multivariate Mixture Models to Describe Longitudinal Patterns of Frailty in American Seniors

Large, longitudinal, multivariate population surveys are increasingly common. Many analytic methods inspect changing rates of individual outcomes but ignore heterogeneous subpopulations that may exist. In this document I propose two analytical methods which extend group-based trajectory models to multivariate outcomes. I use group-based longitudinal finite mixture models (i.e., developmental tr...

متن کامل

A new parameterization for pattern mixture models oflongitudinal data with informative dropoutMichael

Pattern mixture models are frequently used to analyze longitudinal data where missingness is induced by dropout. For measured responses, it is typical to model the complete data as a mixture of multivariate normal distributions, where mixing is done over the dropout distribution. Fully parameterized pattern mixture models are not identiied by incomplete data; Little (1993) has characterized sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The international journal of biostatistics

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2008